Data Augmentation for Visual Question Answering
نویسندگان
چکیده
Data augmentation is widely used to train deep neural networks for image classification tasks. Simply flipping images can help learning by increasing the number of training images by a factor of two. However, data augmentation in natural language processing is much less studied. Here, we describe two methods for data augmentation for Visual Question Answering (VQA). The first uses existing semantic annotations to generate new questions. The second method is a generative approach using recurrent neural networks. Experiments show the proposed schemes improve performance of baseline and state-of-the-art VQA algorithms.
منابع مشابه
An Exploration of Data Augmentation and RNN Architectures for Question Ranking in Community Question Answering
The automation of tasks in community question answering (cQA) is dominated by machine learning approaches, whose performance is often limited by the number of training examples. Starting from a neural sequence learning approach with attention, we explore the impact of two data augmentation techniques on question ranking performance: a method that swaps reference questions with their paraphrases...
متن کاملارایه یک پیکره پرسش و پاسخ مذهبی در زبان فارسی
Question answering system is a field in natural language processing and information retrieval noticed by researchers in these decades. Due to a growing interest in this field of research, the need to have appropriate data sources is perceived. Most researches about developing question answering corpus area have been done in English so far, but in other languages as Persian, the lack of these co...
متن کاملInvestigating Embedded Question Reuse in Question Answering
The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...
متن کاملCharacter-Level Question Answering with Attention
We show that a character-level encoderdecoder framework can be successfully applied to question answering with a structured knowledge base. We use our model for singlerelation question answering and demonstrate the effectiveness of our approach on the SimpleQuestions dataset (Bordes et al., 2015), where we improve state-of-the-art accuracy from 63.9% to 70.9%, without use of ensembles. Importan...
متن کاملQuestion Answering with Character-Level LSTM Encoders and Model-Based Data Augmentation
This paper presents a character-level encoder-decoder modeling method for question answering (QA) from large-scale knowledge bases (KB). This method improves the existing approach [9] from three aspects. First, long short-term memory (LSTM) structures are adopted to replace the convolutional neural networks (CNN) for encoding the candidate entities and predicates. Second, a new strategy of gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017